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Wave Transmission at Discontinuities 
Using Wavenumber-Frequency Techniques 

Segye Oh* 
Received February 23, 1993) 

The problem of wave transmission between two finite beams joined by a cross beam welded 

between them is solved taking full account of longitudinal and flexural waves in all the beams. 

Prediction of longitudinal and flexural wave transmission through the "T" joints in the beam 

system was performed over a wide band frequency range. The wavenumber-frequency spectrum 

was used to separate the wave types based on their different dispersive characteristics. Flexural 

direction forces at one end of the beam system were examined. The experimental data were taken 

using an accelerometer array and a simultaneous twenty-three channel measuring system. A 

transfer function correction technique was employed to account for the instrumentation errors. 

Experimental results were confirmed by the finite element analysis results. The total mean 

squared vibrational energy levels were calculated in each section of the beam system to quantify 

the transmission characteristics of both flexural and longitudinal waves passing through the 

beam joints. 
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I. Introduction 

The problems related to structural vibration 

concern vibration control measures to be taken to 

reduce the amount of mechanical energy being 

transported by structural waves, so that the vibra- 

tion of the structure is reduced. As a complemen- 

tary measure, attempts can be made to observe the 

mechanical energy along its propagation paths in 

some convenient way before it reaches the regions 

where it is radiated into the surroundings. It is 

therefore of great importance to determine the 

dominant paths of vibration propagation through 

the structure. 
The elementary theory of vibrational energy 

transmission is largely based on a model of 

lumped masses interconnected through spring and 

dashpots. Yoshimura(1977, 1979) identified the 

joint  stiffness and joint  damping coefficients in 
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l inear spr ing-dashpot  models.  Gaul(1983)  

identified the rigidity and the damping in a 

spring-dashpot model using the concept of equiv- 

alent linearization. This approximation was 

found to be satisfactory for the behavior of  the 

structure at low frequencies, but not at high fre- 

quencies. Lyon(1975) proposed a similar ap- 

proach known as the Statistical Energy Analysis 

technique, in which the system may be subdivided 

into subsystems as lumped units, with input and 

output power proport ional  to its energy. The 

Statistical Energy Analysis technique may give 

the estimated value based on the averaged be- 

havior for many kinds of problems. Bhattachar- 

ya( 1971 ) in the investigation of wave transmission 

through a plate connecting two infinite parallel 

plates has shown that the reflecting wave fields on 

the cross piece must be considered w])ich will give 

rise to resonance. Rosenhouse(1970) had de- 

scribed the "black box approach" used for wave 
transmission in finite systems containing multi- 

joints, This approach has been confined to prob- 
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lems in which only bending and longitudinal 

waves are generated. This method was developed 

on the basis of the Bernoulli-Euler theory of a 

beam. Doyle and Kamle(1987) investigated the 

behavior of flexural waves in the presence of a 

"T" joint for a finite beam system. 

Much work has been done on wave transmis- 

sion at joints for an infinite system or for a finite 

system with single joint. In practical situations, 

the structure is a finite system and has more than 

one joint. This study is an extension of previous 

works and investigates wave transmission of a 

finite system which consists of two parallel beams 

of finite length connected by a cross beam, taking 

full account of flexural and longitudinal waves in 

all the beams. The experimental and numerical 

results are represented as wavenumber-frequency 

spectra. 

The wavenumber-frequency spectrum was pro- 

posed as a method for direct measurement of the 

wall pressure fluctuations in a turbulent bound- 

ary layer by Maidanik and Jorgensen(1967). 

Blake and Chase(1971), Bu11(1967), and Wills 

(1970) used this technique to perform such mea- 

surements. The successful ability to measure the 

wavenumber-frequency characteristics of space- 

time fields demonstrated that this technique could 

be a powerful tool for interpretation and analysis 

of experimental data. 
In spite of the use of wavenumber-frequency 

analysis for study of the wave fields produced by 

turbulent flow over the surfaces, the applications 

in structural waves are less widespread. The goal 

of the present work is to develop an experimental 

technique for spatial decomposition of structural 

waves using the wavenumber-frequency spectrum 

method. 

2. Numerical Analysis 

2.1 Description of  finite e lement modeling 
of an "H" frame 

The model shown in Fig. 1 consists of five steel 

beam sections in order to know what portion of 

energy is transmitted and what portion of energy 

is attenuated when the longitudinal and the flex- 

ural waves pass through the joints. The lengths of 
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each beam section of the system are Lt =6.5 feet, 

L,,=4.5 feet, L:,=6 feet, L4=5 feet and L s = 4  

feet. 

In order to investigate wave transmission th- 

rough two "T'" joints using the finite element 

method, the three dimensional beam element was 

chosen which has six degrees of freedom at each 

node : translation in the nodal x, y, and z direc- 

tions and rotations about the nodal x, y, and z 

axis. The element size of 1.375 inch is employed 

in this study which is the same as the acceler- 

ometer spacing in the experiment and also sat- 

isfies Shannon's sampling theorem. The boundary 

conditions of all nodes are simulated as all free 

except a fixed z direction translation of the center 

nodal point of section 3 to resist the rigid body 

motion. 

2.2 Wave conversion at joints 
In Fig. 2(a), a 5 kHz harmonic force was as- 

sumed to be induced in the lateral direction on 

beam section I. The lateral oscillation is pr- 

opagated by flexural waves from the excitation 

site to the joints. The analysis yields two spatial 

functions of particle displacements, one longitudi- 

nal and the other flexural. When the incident 

flexural waves in beam section 1 passes through 

the first joint, the amplitudes of the flexural waves 

in beam sections 2 and 3 are decreased because 

most of incident flexural wave energy is changed 

to the longitudinal wave in beam section 3. The 

longitudinal wave in beam section 3 acts as a 

force in the beam elements connected to the sec- 

ond joint. This tbrce acts along the normal to the 

plane of the beam sections 4 and 5 and therefore 
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creates a flexural wave in beam sections 4 and 5. 

The transmitted flexural wave from beam section 

3 has a gain in beam section 4 and a loss in beam 

section 5. This gain or loss depends on the 

material used and its physical dimensions. It is 

observed that the amplitudes of the flexural waves 

at the ends of each beam section are greater than 

those for the reflected waves. The greater ampli- 

tudes are effective at a wavelength distance from 

the beam's ends because of a nearfield effect. In 

Fig. 2(b), the amplitudes of the reflected and 

incident longitudinal waves in beam section 1 are 

relatively small compared to those of the incident 

flexural wave in beam section 1 because the small 

portion of incident energy of the flexural wave is 

reflected as a longitudinal wave at the first joint. 

In beam section 3, the lateral oscillation produced 

in beam section 1 acts as a longitudinal force to 

the cross beam. Therefore, there is a remarkably 

high transformation rate of a flexural wave into a 

longitudinal wave in beam section 3. In beam 

sections 4 and 5, most of the longitudinal wave 

energy in beam section 3 is converted to the 

flexural wave. Only the energy contained in the 
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flexural wave in beam section 3 is utilized in 

increasing the amplitudes of longitudinal waves 

in beam sections 4 and 5. 

2.3 Dispersion 
The structural responses of the described sys- 

tem predicted by the finite element method and 

experiments are generally dispersive because of 

the dispersive nature of the flexural wave. That is, 

each harmonic component propagates at a differ- 

ent wave speed such that a wave shape is changed 

with time. In this context, a differentiation must 

be made between the phase velocity and the group 

velocity (Cremer, 1973). 

Figure 3 shows the dispersion curves for the 

flexural and the longitudinal waves in frequency 

range 5 kHz to 10 kHz. For the flexural wave, the 

bending wavenumber kB and the circular fre- 

quency co are related by 

4 P ~  

where EI is the bending stiffness and oA is the 

mass per unit length. The flexura[ wavenumber 

depends on the square root of the frequency. For 

the longitudianal wave, the wavenumber kL and 

the circular frequency are related by 

kL =___w, 
C L  

where cL is a phase velocity of the longitudinal 

wave, The wavenumber kL is the spatial analog of 

the circular frequency. The longitudinal wave is 

a straight line representing a nond~spersive sys- 

tem, while the flexural weve has a dispersive 

Fig. 3 
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behavior depending on fw. Therfore, these differ- 

ent dispersion behaviors are used as a spatial 

technique to discriminate between two different 
types of waves. 

2.4 Numerical technique 
For the finite element analysis using ANSYS, a 

broad band white noise from 5 kHz to 10 kHz is 

represented as the collection of 810 harmonic 

single frequencies with increment of 6.17 Hz. For 

every given single frequency, the displacements at 

each nodal point of a finite element model are 

calculated and then, are inputs for the F F T  from 

the spatial domain to the wavenumber domain. 

Zero padded 64 data produced at nodal points on 

each beam section are Fourier transformed to the 

wavenumber domain for every 810 single fre- 

quencies. The transformed data in the wavenum- 

ber domain are symmetric about the Nyquist 

wavenumber km~x:2.28/inch. In this study, only 

one of the two symmetric parts is employed and 

810 frequency components for each of the 32 

different wavenumbers are divided into 270 seg- 

ments to reduce the size of the data contained in 

a wavenumber-frequency spectrum. Each segment 

contains three sequential frequency components 

x~ and are averaged as follows: 

A ~ I ~ ~ t  = [~2~xnJ2 ,  n = l ,  2, 3 
J n = l  

Then, 270 averaged frequency components A 

about every 32 different wavenumbers are generat- 

ed in Figs. 4 through 8. 

2.5 Numerical  results 
In the wavenumber-frequency spectra (Figs. 4 

through 8), the x-axis represents the frequency 

range 5 kHz to 10 kHz ; the y-axis represents the 

wavenumber range 0 to 2.28/inch, and the z-axis 

represents displacements. It is observed that the 

peak values representing resonant frequencies in 

the wavenumber-frequency spectra must have infi- 

nite values, however, the peak values have finite 

amplitudes. There are two reasons. The one is the 

poor resolution in the frequency domain. The 

given frequencies in the range 5 kHz to 10 kHz 

with increment 6.17 Hz do not exactly coincide 

Fig. 5 Dispersion curves of the flexural and the 
longitudinal waves at beam section 2 of the 
"H" frame 

Fig. 4 Dispersion curves of the flexural and the 
longitudinal waves at beam section 1 of the 
"H" frame 

Fig. 6 Dispersion curves of the flexural and the 
longitudinal waves at beam section 3 of the 
"H" frame 
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with the natural frequencies of a system. The 

other reason is that the averaged three sequential 

frequency components about every 32 different 

wavenumbers make the peak values have finite 

amplitudes. It is observed that the energy of the 

wavenumber-frequency components leaks into the 

adjoining spectral lines. This is a leakage which 

comes from poor resolution in wavenurnber and 

frequency domains and an unperiodic sampling 

window for the FFT. 

As predicted in Fig. 3, the flexural and the 

longitudinal wave dispersion curves are identical 

to those in Figs. 4 through 8. Figures 4 through 8 

represent the flexural and the longitudinal wave 

228 

Fig. 7 Dispersion curves of the flexural and the 
longitudinal waves at beam section 4 of the 
"H" frame 

228 

Fig. 8 Dispersion curves of the flexural and the 
longitudinal waves at beam section 5 of the 
"'H" frame 

Oh 

dispersion curves at each section of a system when 

the flexural direction harmonic forces are induced 

at the end of beam section 1. It is observed that 

overall amplitudes of the flexural waves in beam 

section 1 are decreased in beam section 3 because 

most flexural wave energy is changed to the longi- 

tudinal waves in beam section 3. There are losses 

in sections 4 and 5 when the flexural and longitu- 

dinal waves pass through the second joint. 

3. E x p e r i m e n t a l  A n a l y s i s  

3.1 Laboratory set-up 
The laboratory set-up used was designed to 

model a finite beam system. The experimental 

model consists of two parallel finite rectangular 

steel beams welded rigidly by a cross rectangular 

steel beam with cross-sectional dimensions of 2 

inches by 0.5 inches. Free boundary conditions 

are simulated of all ends of the described system. 

The "H" frame is supported at five points with 

thin steel wires which are able to be individually 

adjusted vertically. The "H" frame was excited by 

a shaker driving through a thin rod at the end of 

beam section 1. 

3.2 Theory of aecelerometer array 
Use of an accelerometer array technique is 

important to spatial signal processing to prevent 

aliasing about the highest wavenumber. This tech- 

nique is similar to that proposed to measure the 

wall pressure in a turbulent boundary layer, as 

has been discussed by Hodgson and Keltie(1984). 

In the present study this technique was adopted to 

take experimental data using twenty three acceler- 

ometers. 

Consider that the responses of the acceler- 

ometers, Un(xn ; t), are sampled from N equally 

spaced accelerometers mounted on a beam in one 

coordinate direction at a distance h apart. Let 

the output of a finite time interval t = 0  to l =  

Mz_l! be Fourier transformed to the frequency 

domain producing M outputs, U,,(xn ;co) from 

each of the spatial sampling points at x, ,= nh, *l 

=0,  1, --., N - I .  Each of these data may be 

Fourier transformed to the wavenumber domain 

to yield N / 2  independent spectral lines, U,(k,, ; 

co). in the wavenumber domain. These spectral 
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lines are given at this discrete wavenumber 

k . . .  -2N-- 2ran 
'~= N/f ; re=O,1, 1. 

The highest wavenumber associated ~ith the 

aecelerometer spacing h according to the relation 

7f 

where k~• is called the Nyquist wavenumber. 

These results are shown from the sampling theo- 

rem in the spatial domain which states that at 

least two samples per wavelength are required to 

define a wavenumber component in the original 

data. Hence the sampling rate should be at least 

two times of the highest wavenumber. 

The resolution of the N / 2  spectral lines will be 

2;r 
J k - - - ~  z 

Thus, for a given value of h, as the number of 

accelerometers increases, the number of spectral 

estimates also increase and the resolution ban- 

dwidth decreases. 

3.3 Transfer function correction technique 
As depicted in Fig. 9, all twenty three acceler- 

ometer were mounted on the electrodynamic sha- 

ker head with a broad band white noise input 

from 5 kHz to 10 kHz to measure the electronical- 

ly introduced magnitude and phase differences. 

With this arrangement, each accelerometer was 

subjected to the same excitation in both phase and 

magnitude. As the accelerations are converted to 

voltages, each acceleration, ,~, is effectively multi- 

' o - �9 
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Schematic diagram of transfer function cor- 
rection technique 

Fig. 9 

plied by the overall complex gain. For example, 

performing the transfer function on two signals is 

equal to the ratio of the cross-spectrum between 

transducers 0 and 1 to the power-spectrum of 

transducer 0. The relative phase between trans- 
ducers 0 and I can be obtained inverse tangent of 

the ratio of the imaginary part of the cross- 

spectrum to the real part of the cross-spectrum 

between transducers 0 and 1. in this way, the 

complex gain and the phase difference about a 

master channel (in this case channel 0) may be 

compared to the other twenty two channels. 

The 23 accelerometers are mounted on each 

beam section of an "H" frame and measure the 

accelerations through the transducers. The accel- 

erations are again multiplied by the complex gain 

of each channel. The cross-spectrum is equivalent 

to multiplying complex signals. Thus, the cross- 

spectrum of two accelerometers is then the accel- 

eration at the reference point multiplied by a 

complex instrument gain times the acceleration at 

the other point multiplied by a complex instru- 

ment gain. If the cross-spectrum of a pair is 

divided by the transfer function when a pair was 

mounted on the shaker, the result is equivalent to 

the product of both acceleration in the pair 

multiplied by the same instrument gain. The 

phase error can also be compensated by subtract- 

ing the relative phase difference from channel I. 

In this way, phase and gain differences between 

instrument channels in a pair can be eliminated. 

3.4 Experimental technique 
This study investigates the wave transmission 

through two "T" joints using 23 accelerometers. 

The signals taken at 23 different locations during 

two seconds on each beam section using the 

accelerometers are sampled simultaneously by 

sample-and-hold modules in MASSCOMP at a 

sampling rate of 38 kHz. Then the first 8192 data 

points of 22 pair channels (a master channel with 

the other 22 channels) are Fourier transformed 

and combined to make the cross-spectrum. Using 

the cross-spectra for each pair of channels and the 

transfer function, the corrected magnitude and 

phase tbr each channel can be obtained. Next, 

another 8192 data points are selected, the first half 

of which include the previous data set. The 
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magnitude and phase correction procedure is 

repeated on this data set. This is repeated 16 times 

to obtain the entire averaged data. The obtained 

8192 averaged data points at 23 different locations 

represent frequency components from 0 Hz to 19 

kHz with increments of 4.64 Hz. However, we 

need the frequency components in the range 5 

kHz to 10 kHz. The data in this frequency range 

locate from the 1078th to 2157th components 

among 8192 averaged frequency components. 

Therefore, 1080 frequency components at 23 dif- 

ferent locations are obtained. For characterizing 

the data in the wavenumber-frequency domain, 

the data in the spatial domain for every 1080 

single frequencies must be Fourier transformed to 

the wavenumber domain. For the FFT,  a number 

of spatial domain data requires a power of 2. 

Therefore, the 23 spatial domain data for every 

1080 single frequencies are padded with zeros up 

to a 64 data sequence in order to make the same 

interpolation width as the analytical result3. The 

transformed data in the wavenumber domain are 

symmetric about the Nyquist wavenumber kma• 

2.28/inch. In this study, only one of the two 

symmetric parts is employed and 1080 frequency 

components for each of the 32 different wavenum- 

bers are divided into 270 segments to reduce the 

size of the data contained in a wavenumber- 

frequency spectrum. Each segment contains four 

sequential frequency components xn and are aver- 

aged as follows: 

A = L ~ I : t .  ] , n = l ,  2, 3, 4 

accele.~liOn $~ctral level 

228 

Fig. 10 Dispersion curves of the flexural and the 
longitudinal waves at beam section 1 of the 
"H" frame 

2.28 

Fig. 11 Dispersion curves of the flexural and the 
longitudinal waves at beam section 2 of the 
"H" frame 

acceleration s~p~u'zl Level 

Then, 270 averaged frequency components A 

about every 32 different wavenumbers are generat- 

ed in Figs. 10 through 14. 

3.5 Experimental results 
In the wavenumber-frequency spectra (Figs. 10 

through 14), the x-axis represents the frequency 

range 5 kHz to 10 kHz ; the y-axis represents the 

wavenumber range 0 to 2.28/inch, and the z-axis 

represents acceleration spectral level. It is obser- 

ved that the energy of wavenumber-frequency 

components leaks into the adjoining spectral 

lines. This is a leakage which comes from poor 

resolution in wavenumber and frequency domains 

Fig. 12 Dispersion curves of the flexura[ and the 
longitudinal waves at beam section 3 of the 
"H" frame 
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and an unper iodic  sampling window for the FFT.  

In the wavenumber-f requency spectrum, the peak 

values representing the resonant frequencies do 

not occur at the same frequencies in all five beam 

sections because the local resonances of  each 

beam section depend on the dimensions of  the 

beam. As predicted in Fig. 3, the flexural  and 

the longitudinal  wave dispersion curves are iden- 

tical to those in Figs. I0 through 14. 

Figures 10 through 14 represent the flexural 

and the longi tudinal  wave dispersion curves at 

each section of  a system when a broad band white 

noise from 5 kHz to 10kHz  is induced in the 

flexural direction at the end of  beam section 1. 

There is a remarkably  high t ransformation rate of  

a flexural waves into longi tudinal  waves in beam 

accelerauon spectral level 

i 

Fig. 13 Dispersion curves of the flexural and the 
longitudinal waves at beam section 4 of the 
"H" frame 

acceleration spectral level 

section 3. Therefore,  the overall  ampli tudes of  the 

transmitted flexural waves in beam section 3 are 

relatively small  compared  to those in beam sec- 

tion 1. There are losses in beam sections 4 and 5. 

Only a small por t ion of  energy of  the longi tudinal  

and flexural waves in beam section 3 is transmit- 

ted to beam sections 4 and 5. 

4. Comparison between the Numerical  
and the Experimental Results 

The overall  energy level was obtained by the 

root mean square of  the overall  wavenumber-  

frequency components  of  the flexural and the 

longi tudinal  waves separately at each beam sec- 

tion. For  the numerical  results, a reference energy 

level is chosen as the root mean squared 

wavenumber-f requency components  of  the lon- 

gitudinal  waves in beam section 1. The root mean 

squared wavenumber-f requency components  of  

the flexural and the longitudinal  waves in the 

other  sections are divided by the reference energy 

level to obtain all relative values. As the same 

cq 

i 

+ Experizental results 
o Numerical r e s u l t s  

a 

+ 
f~ [] 

0 2 4 
Section ntmber 

(a) Relative energy level of the longitudinal 
waves 

2.28 

Fig. 14 Dispersion curves of the flexural and the 
longitudinal waves at beam section 5 of the 

"H" flame 

Experimental results 1 
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2 4 5 

Section n~ber 

(b) Relative energy level of the flexural waves 

Fig. 15 The relative energy level of the longitudinal 
and the flexural waves 
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manner in the experimental results, the reference 

energy level is chosen as the root mean squared 

wavenumber-frequency components of  the longi- 

tudinal waves in the beam section 1. All relative 

values about the reference energy level are 

obtained the same as in the previous case. 

Figure 15 compares the obtained relative values 

of the numerical and the experimental results. 

Figure 15(a) shows the relative values of the 

longitudinal waves at each section. The relative 

value of the longitudinal waves in section 3 by the 

numerical analysis is 70% higher than that by the 

experiment. 

Figure 15(b) shows the relative values of the 

flexural waves at each section. The overall energy 

level of the flexural waves in beam section 1 is 

approximately 6 or 7 times higher than that of the 

longitudinal waves in beam section 1. The overall 

energy level of the flexural waves has a loss in 

sections 2 and 3 because most flexural waves 

changes to the longitudinal waves in beam section 

3. 

Comparisons between the numerical analysis 

and the experiment show a good agreement. 

Therefore, reasonable prediction of wave trans- 

mission under certain classes of structure and 

design circumstance may be obtained by the tech- 

nique demonstrated in this study. 

5. Conclusions  

The analysis presented in this study shows that 

joints cause a change in the type of waves reflect- 

ed and transmitted. It is also observed that there 

is either a gain or a loss in the amplitudes of  the 

flexural waves during transmission through the 

second joint. This loss or gain in beam sections 4 
and 5 depends on the material used and physical 

dimensions of beams. In spite of the limited 

wavenumber resolution, the experimental results 

from the 23 channel input limitation of the system 

provided reasonable prediction of wave transmis- 

sion through two "T'" joints. Even though the 

difference of  rms values of the overal l  

wavenumver-frequency components of the flexur- 

al and longitudinal waves at each beam section 

between the numerical and the experimental 

results is significant in section 3, the trends of 

increased and decreased energy of the flexural and 

longitudinal waves before and after the joints 

show good agreement between the numerical and 

the experimental results. 
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